Cancers
are classified by the type of cell that resembles the tumor and, therefore, the tissue presumed to be the origin of the tumor. The following general categories are usually accepted:
• Carcinoma: malignant tumors derived from epithelial cells. This group represents the most common cancers, including the common forms of breast, prostate, lung and colon cancer.
• Lymphoma and Leukemia: malignant tumors derived from blood and bone marrow cells
• Sarcoma: malignant tumors derived from connective tissue, or mesenchymal cells
• Mesothelioma: tumors derived from the mesothelial cells lining the peritoneum and the pleura.
• Glioma: tumors derived from glia, the most common type of brain cell
• Germinoma: tumors derived from germ cells, normally found in the testicle and ovary
• Choriocarcinoma: malignant tumors derived from the placenta
Malignant tumors are usually named using the Latin or Greek root of the organ as a prefix and the above category name as the suffix. For instance, a malignant tumor of liver cells is called hepatocarcinoma; a malignant tumor of the fat cells is called liposarcoma. For common cancers, the English organ name is used. For instance, the most common type of breast cancer is called ductal carcinoma of the breast or mammary ductal carcinoma. Here, the adjective ductal refers to the appearance of the cancer under the microscope, resembling normal breast ducts.
Benign tumors are named using -oma as a suffix with the organ name as the root. For instance, a benign tumor of the smooth muscle of the uterus is called leiomyoma (the common name of this frequent tumor is fibroid).
Adult cancers
In the USA and other developed countries, cancer is presently responsible for about 25% of all deaths.[3] On a yearly basis, 0.5% of the population is diagnosed with cancer.
The statistics below are for adults in the United States, and will vary substantially in other countries:
Childhood cancers
Cancer can also occur in young children and adolescents, but it is rare. Some studies have concluded that pediatric cancers, especially leukemia, are on an upward trend.[4][5]
The age of peak incidence of cancer in children occurs during the first year of life. Leukemia (usually ALL) is the most common infant malignancy (30%), followed by the central nervous system cancers and neuroblastoma. The remainder consists of Wilms' tumor, lymphomas, rhabdomyosarcoma (arising from muscle), retinoblastoma, osteosarcoma and Ewing's sarcoma.[3]
Female and male infants have essentially the same overall cancer incidence rates, but white infants have substantially higher cancer rates than black infants for most cancer types. Relative survival for infants is very good for neuroblastoma, Wilms' tumor and retinoblastoma, and fairly good (80%) for leukemia, but not for most other types of cancer.
Tuesday, March 27, 2007
Cancer (part IV)
Posted by HackerCakep at 3:57 AM 0 comments
Cancer (Part III)
When Marie Curie and Pierre Curie discovered radiation at the end of the 19th century, they stumbled upon the first effective non-surgical cancer treatment. With radiation came also the first signs of multi-disciplinary approaches to cancer treatment. The surgeon was no longer operating in isolation, but worked together with hospital radiologists to help patients. The complications in communication this brought, along with the necessity of the patient's treatment in a hospital facility rather than at home, also created a parallel process of compiling patient data into hospital files, which in turn led to the first statistical patient studies.
Cancer patient treatment and studies were restricted to individual physicians' practices until World War II, when medical research centers discovered that there were large international differences in disease incidence. This insight drove national public health bodies to make it possible to compile health data across practises and hospitals, a process that many countries do today. The Japanese medical community observed that the bone marrow of bomb victims in Hiroshima and Nagasaki was completely destroyed. They concluded that diseased bone marrow could also be destroyed with radiation, and this led to the discovery of bone marrow transplants for leukemia. Since WWII, trends in cancer treatment are to improve on a micro-level the existing treatment methods, standardize them, and globalize them as a way to find cures through epidemiology and international partnerships.
The following closely related terms may be used to designate abnormal growths:
• Neoplasia and neoplasm are the scientific designations for cancerous diseases. This group contains a large number of different diseases. Neoplasms can be benign or malignant.
• Cancer is a widely used word that is usually understood as synonymous with malignant neoplasm. It is occasionally used instead of carcinoma, a sub-group of malignant neoplasms. Because of its overwhelming popularity relative to 'neoplasia', it is used frequently instead of 'neoplasia', even by scientists and physicians, especially when discussing neoplastic diseases as a group.
• Tumor in medical language simply means swelling or lump, either neoplastic, inflammatory or other. In common language, however, it is synonymous with 'neoplasm', either benign or malignant. This is inaccurate since some neoplasms usually do not form tumors, for example leukemia or carcinoma in situ.
• Paraneoplasia is a disturbance associated with a neoplasm but not related to the invasion of the primary or a secondary (metastatic) tumour. Disturbances can be hormonal, neurological, hematological, biochemical or otherwise clinical.
Posted by HackerCakep at 3:50 AM 0 comments
Cancer (part II)
Today, the Greek term carcinoma is the medical term for a malignant tumor derived from epithelial cells. It is Celsus who translated carcinos into the Latin cancer, also meaning crab. Galen used "oncos" to describe all tumours, the root for the modern word oncology.[1]
Hippocrates described several kinds of cancers. He called benign tumours oncos, Greek for swelling, and malignant tumours carcinos, Greek for crab or crayfish. This name probably comes from the appearance of the cut surface of a solid malignant tumour, with a roundish hard center surrounded by pointy projections, vaguely resembling the shape of a crab (see photo). He later added the suffix -oma, Greek for swelling, giving the name carcinoma. Since it was against Greek tradition to open the body, Hippocrates only described and made drawings of outwardly visible tumors on the skin, nose, and breasts. Treatment was based on the humor theory of four bodily fluids (black and yellow bile, blood, and phlegm). According to the patient's humor, treatment consisted of diet, blood-letting, and/or laxatives. Through the centuries it was discovered that cancer could occur anywhere in the body, but humor-theory based treatment remained popular until the 19th century with the discovery of cells.
Though treatment remained the same, in the 16th and 17th centuries it became more acceptable for doctors to dissect bodies to discover the cause of death. The German professor Wilhelm Fabry believed that breast cancer was caused by a milk clot in a mammary duct. The Dutch professor Francois de la Boe Sylvius, a follower of Descartes, believed that all disease was the outcome of chemical processes, and that acidic lymph fluid was the cause of cancer. His contemporary Nicolaes Tulp believed that cancer was a poison that slowly spreads, and concluded that it was contagious.[2]
With the widespread use of the microscope in the 18th century, it was discovered that the 'cancer poison' spread from the primary tumor through the lymph nodes to other sites ("metastasis"). The use of surgery to treat cancer had poor results due to problems with hygiene. The renowned Scottish surgeon Alexander Monro saw only 2 breast tumor patients out of 60 surviving surgery for two years. In the 19th century, asepsis improved surgical hygiene and as the survival statistics went up, surgical removal of the tumor became the primary treatment for cancer. With the exception of William Coley who in the late 1800s felt that the rate of cure after surgery had been higher before asepsis (and who injected bacteria into tumors with mixed results), cancer treatment became dependent on the individual art of the surgeon at removing a tumor. During the same period, the idea that the body was made up of various tissues, that in turn were made up of millions of cells, laid rest the humor-theories about chemical imbalances in the body. The age of cellular pathology was born.
Posted by HackerCakep at 3:49 AM 0 comments
Cancer
is a class of diseases or disorders characterized by uncontrolled division of cells and the ability of these cells to spread, either by direct growth into adjacent tissue through invasion, or by implantation into distant sites by metastasis (where cancer cells are transported through the bloodstream or lymphatic system). Cancer may affect people at all ages, but risk tends to increase with age. It is one of the principal causes of death in developed countries.
There are many types of cancer. Severity of symptoms depends on the site and character of the malignancy and whether there is metastasis. A definitive diagnosis usually requires the histologic examination of tissue by a pathologist. This tissue is obtained by biopsy or surgery. Most cancers can be treated and some cured, depending on the specific type, location, and stage. Once diagnosed, cancer is usually treated with a combination of surgery, chemotherapy and radiotherapy. As research develops, treatments are becoming more specific for the type of cancer pathology. Drugs that target specific cancers already exist for several cancers. If untreated, cancers may eventually cause illness and death, though this is not always the case.
The unregulated growth that characterizes cancer is caused by damage to DNA, resulting in mutations to genes that encode for proteins controlling cell division. Many mutation events may be required to transform a normal cell into a malignant cell. These mutations can be caused by radiation, chemicals or physical agents that cause cancer, which are called carcinogens, or by certain viruses that can insert their DNA into the human genome. Mutations occur spontaneously, and may be passed down from one cell generation to the next as a result of mutations within germ lines. However, some carcinogens also appear to work through non-mutagenic pathways that affect the level of transcription of certain genes without causing genetic mutation.
Many forms of cancer are associated with exposure to environmental factors such as tobacco smoke, radiation, alcohol, and certain viruses. Some risk factors can be avoided or reduced.
From :wikipedia
Posted by HackerCakep at 2:59 AM 0 comments